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CMB-54: a coherent project building on CMB stage Il & lll projects
including participation by:
the ACT, BICEP/KECK, SPT and Polarbear CMB teams;

Argonne, FNAL, LBNL and SLAC national labs;
and the HEP community.
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for the CF5 Inflation and Neutrino topical groups
and the CMB-$4 collaboration
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Inflation?

Universe expands by >e®° Dark Energy

. a e Accelerated Expansion
solving smoothness problem, i W TR S
flathess and more..

Galaxies, Planets, elc.

. . t v‘;....esx f
What drove inflation? L 27

What is the energy scale of inflation?

Dus
Fluctuatic
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about 400 million yrs.

- spectral index of fluctuations, ns

- constrain tensor to scalar fluctuations

- inflationary gravitational wave B-mode polarization = Zang Expsnan -
13.7 billion years

- non-Gaussianity?

graphic from NASA/WMAP



Neutrinos?

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern  Dark Ages Development of
400,000 yrs. Galaxies, Planets, elc.

WMAP

N s

Effective number of relativistic species about 400 million yrs.

‘dark radiation’ impacts intrinsic CMB power spectrum Big Bang Expansion
13.7 billion years

graphic from NASA/WMAP



Neutrinos?

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc. ‘
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sig Bang Expansion
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Radiation
Domination

Matter Domination
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Sum of the neutrino masses
impacts growth of large scale structure,

i.e., the matter power spectrum
Probed by CMB lensing

P(k) —

graphic from NASA/WMAP



Neutrinos?

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
Galaxies, Planets, elc.

13.7 billion years

Radiation

Matter Domination : :
Domination

2my > 0

Sum of the neutrino masses
impacts growth of large scale structure,

i.e., the matter power spectrum
Probed by CMB lensing

P(k) —

graphic from NASA/WMAP
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CMB-S4 will be 5x deeper and cover
50x more sky than SPTpol survey
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Primary CMB anisotropy - 9 harmonics

Planck paper 1 2013
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Inflation checks: Geometrically flat universe; Superhorizon features;
Acoustic peaks/adiabatic fluctuations; Departure from scale invariance.



Constraining inflationary models
Joint r and ns limits

° © \ Planck XXII 2013 Planck+WP
\
o | Planck+WP+highL
o
Natural Inflation

]
[ ]
B Planck+WP+BAO
]

'4(_% "—3 Power law inflation
CE > Low Scale SSB SUSY
T:; R? Inflation
n = |
K= V x ¢?/3
g V x ¢
E 8 i — V x ¢?
- V x ¢3
8 | [ ] N*:5O
o 0.94 0.96 0.98 100 | ® N.=60

Primordial Tilt (ns)

Spectral Index of primordial fluctuati?ns, Ns, Inflation evidence

2 _ A2 AN
where A%(k) = A% (ko) (k_o) ns # 1 at over 50



Constraining inflationary models
Joint r and ns limits

Bk XXI1I 2013 Planck+WP
Planck+WP+highL

]
[ ]
B Planck+WP+BAO
]

Natural Inflation

Power law inflation
Low Scale SSB SUSY

R? Inflation
V o ¢?/3
\ V x ¢
\ i — V x ¢?
\ V x ¢3
\ o N,=50

0.94 0.96 0.98 100 | @ N.=60
Primordial Tilt (ns)

Spectral Index of primordial fluctuati?ns, Ns, Inflation evidenCe

2 2 AN
where A%(k) = A% (ko) (k_o) ns # 1 at over 50



Primary CMB anisotropy - 9 harmonics
Improves precision of sound horizon, 0s,

& provides larger lever arm
10

Planck paper 1 2013
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And most importantly provides
determination of the damping scale, 64

Planck paper 1 2013
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Constraining model extensions:
joint Ners and 2my constraints

4.8 I Planck+WP+highL -
Planck+WP+highL+BAO

4.0 F 1 Ner = 3.3010.27

2m, < 0.23eV

/ 4 at95% C.L.
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Planck XVI 2013
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2m, [eV]

Ne

Nesr is the effective number of relativistic species.
For standard 3 neutrinos Nei =3.046.
It measures the extra energy relative to the photons.
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CMB lensing

A

N o

Large-Scale
Structure
Lenses the CMB

 RMS deflection of ~2.5°
* Lensing efficiency peaks at z ~ 2
e Coherent on ~degree

(~300 Mpc) scales

graphic from ESA Website



Lensing of the CMB

17°x17°

lensing potentla] ~ unlensed cmb

from Alex van Engelen



Lensing of the CMB

17°x17°

lensing potentla] lensed cmb

from Alex van Engelen



We can take a CMB map




and construct the CMB Lensing map
reconstruction of the mass projected

along the line of sight to the CMB.

Lensing convergence map smoothed to 1 deg resolution



and construct the CMB Lensing map
reconstruction of the mass projected

alongq the line of sight to the CMB.

Correlation of matter traced by CMB lensing
(contours) and distribution of high z galaxies
(grayscale; Herschel 500 um) [arXiv:1112.5435]

othed to 1 deg resolution




CMB lensing power spectrum
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Sensitive to the neutrino masses
>my = 0.1 eV — 5% amplitude of spectrum

Polarization gives additional lensing
sensitivity and is a cleaner probe.



CMB lensing power spectrum

Planck XVII 2013

MV
143GHz
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ACT (2013)
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Sensitive to the neutrino masses

>my = 0.1 eV — 5% amplitude of spectrum

Polarization gives additional lensing
sensitivity and is a cleaner probe.



CMB lensing and optical surveys

CMB lensing complements large
optical surveys such as DES, 3t
eBOSS, LSST, DESI, Euclid, WFIRST,
etc. N
11 ',’. N\\
S O \\
L 3 °f '\ \
The combination leads to better \ \
shear-bias calibration and more - CMBL + optL (self cal) = ~~ .-
) CMBL + optL (fix bias)
robust constraints on Dark Energy 2| CMBL x optL (self cal w/ c.c.)
and the properties of neutrinos. -~ CMBL + optL + gal (self cal)
=3 CMBL + optL + gal (fix bias)
— CMBL x optL x gal (self cal w/ c.c.)
- = 1 0
—Critical for CMB-S4 sky coverage Wo

From “Can CMB Lensing Help Cosmic Shear

to overlap optical surveys.
P Op Y Surveys?” Das, Errard, and Spergel, 2013



CMB polarization:
the next frontier for lensing & inflation
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CMB polarization:
the next frontier for lensing & inflation
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CMB polarization:
the next frontier for lensing & inflation
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CMB polarization:
the next frontier for lensing & inflation
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CMB polarization:
the next frontier for lensing & inflation
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CMB polarization:
the next frontier for lensing & inflation
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Status of B-mode experiments

Barkats et al., arXiv:1310.1422
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SPTpol Detection of lensing B-modes
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SPTpol: Hanson et al, Phys.Rev.Lett.111:141301,2013 (arXiv:1307.5830)



CMB timeline
e 2009:r<0.7 (B'CEP) Chiang et al, 0906.1181

« 2013: Stage Il experiments detect lensing B-modes
« 2014: r = 0.1 from Inflationary B-modes (BICEP 2) ?

» 2013-2016: Stage Il experiments
g(r)~0.03, g(Nes)~0.1, o(Zmy)~0.1eV

« 2016-2020: Stage Il experiments
ag(r)~0.01, o(Nef)~0.06, o(Zmv)~0.06eV;

* 2020-2025: Stage |V experiment, CMB-54
o(r) = 0.001, o(Nefr) = 0.020, o(Zmyv) =16 meV



CMB timeline
e 2009:r<0.7 (B'CEP) Chiang et al, 0906.1181

« 2013: Stage Il experiments detect lensing B-modes
« 2014: r = 0.1 from Inflationary B-modes (BICEP 2) ?

» 2013-2016: Stage Il experiments
g(r)~0.03, g(Nes)~0.1, o(Zmy)~0.1eV

« 2016-2020: Stage Il experiments
ag(r)~0.01, o(Nef)~0.06, o(Zmv)~0.06eV;

* 2020-2025: Stage |V experiment, CMB-54
a(r) = 0.001, o(Nesr) = 0.020, o(Zmy) =16 meV

‘ On an ambitious path forward and producing a steady flow of scientific results ‘




CMB-S4

What it will deliver

Inflation projection for CMB-54
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CMB-S4 What it will deliver

Jomt prOJectlons Neff - va

i p— PIanck (no lensing) + DESI
— Stage IV CMB
32 — Stage IV CMB +
— Stage IV CMB
3.1} .
o(Zm,) = 16 meV
- with two probes!
Z® 3.0 1
2.9 .
6(Ne) = 0.020
5 sl | unique to CMB
2.7+ | | |
0.00 0.08 0.16
Ym, [eV]

Our forecasters: J. Errard, P. McDonald, A. Slosar K.Wu, O. Zahn



CMB-S4 What it will take

« CMB-S4 Survey:

- Maximum return on Inflation, Neutrino, and Dark Energy science requires
an optimized survey which includes a range of resolution and sky coverage
from deep to wide.

e Sensitivity of ~1 uK-arcmin over half the sky

« Experimental Configuration:

- 200,000+ detectors on multiple platforms

- spanning 40 - 240 GHz for foreground removal

- <= 3 arcmin resolution required for CMB lensing & neutrino science,
(higher resolution leads to amazing and complementary
dark energy constraints and gravity tests on large scales
via the SZ effect)

See Snowmass planning document arxiv:1309.5383



CMB-S4: How to do it

* Build on extensive experience from earlier
generation CMB experience
— People
— Technology
— Systematic Error Control
— Analysis

* And increase throughput by over an order of
magnitude



CMB-S4: How to do it

* Build on extensive experience from earlier
generation CMB experience
— People
— Technology
— Systematic Error Control
— Analysis

* And increase throughput by over an order of
magnitude

Technical challenge:
Is the scaling of the CMB detector arrays.

Sociological evolution:
the highly competitive CMB groups are working together.




CMB-S4: How to do it

* Exploit superb, established sites at Atacama Chile
and South Pole

— proven high and dry sites for sensitive CMB
measurements

— provides the required access to > 50% of the sky,
including coverage of the optical survey fields



CMB $4 Large Area Survey Region

(overlap with LSST, MS-DESI, etc)

+  MS-DESI »' yek MS-DES|
| - MS-DESI

Chile
LSST observable
sky
‘ \ .................................
South Pole

observable sky

0.0 oo— L — 0.10 mK RJ
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Build on investment by NSF in Chilean
mid-Latitude Facilities and CMB experiments

5200 meter (17,000 ft) site developed
by the ACT team since 1998 provides
access to over 50% of the sky

- The Atacama Cosmology Telescope
- 6 meter aperture (1.4 arcmin at 150 GHz)
- Polarbear Telescope
3.5 meter (3.5 arcmin at 150 GHz)

$15M+ in Telescopes and Logistics

Power, internet, workspace, roads
- Machine shop and supplies
- Low altitude control room and housing
- Ties to Chilean contractors and suppliers
- Legal presence in Chile
- Established positive working relationship with CONICYT (Chilean NSF)




Build on investment by NSF in
South Pole Facilities and CMB experiments

SPT BICEP ACBAR QUAD/DASI

* Major NSF research station (not shown) with excellent logistical support
e CMB measurements since the |1980s;
Martin A. Pomerantz observatory established in 1994.
* Exceptionally low atmospheric noise (sky-noise) due to dry and stable atmosphere.
* Access to ~4000 square degrees of low foreground sky (10%), which is observable

year-round, 24 hrs/day
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CMB'S4: HOW tO dO it UC Berkeley prototype pixel
- _ A = T

\ TESi

7'V } Det%ector

\\\\' \:T‘.T‘-\. > ,_‘ y ’,/ ’)//
N p AT_ _’-'.'?::-’j’ //‘ 'r}
e/ // !
ke -«»/- ./_/——;..‘,/ //'/ i
- ; /
~ S

Broad;béﬁa Polarization
Sensitive Antenna

2012: SPTpol Stage |l
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1600 detectors (ANL/NIST) i
ANL, LBNL, SLAC, Polarbear and SPT teams working on Stage Il | ,:?fiffif:"‘m -------
to Stage lll detector advance based on UCB 3-band, dual i, et
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» Uniform properties over 150-mm diameter wafers

» Consistent fabrication from batch-to-batch

2016: SPT-3G Stage lll 4x larger area
15,234 detectors at T = 250mK



How to do It

CMB-S4

3

Stage
~15,200 detectors

Stage-4
: CMB-S4
200,000+ detectors

2020+
multiple telescopes

Detector sensitivity has been

ted by photon “shot” noise for

limi

further
ts are made only by

making more detectors.

last ~15 years;

improvemen




CMB-S4: How to do it

- CMB-S4 requirements exceed capabilities of
the traditional University-based CMB groups

* Increased production scope and reliability

—200,000+ detectors requires production of
approximately 150 silicon 6” detector arrays

* Multiplexed TES Readout

e Large Cryogenic Optics

 Computing Infrastructure and Analysis tools
—~10,000 x Planck data size (~ 6 TB/day)

* Project Organization/Management

-> requires DOE National lab and HEP community
working with the University-based CMB groups



A

Argonne

NATIONAL LABORATORY

¢ Investment in robust, large
scale detector fabrication.

¢ Involvement with SPTpol
Stage Il experiment (provided
90 GHz channel).

¢ Involvement in SPT-3G
Stage lll, providing detectors.

N

- A
(reeeee m‘

BERKELEY LAB

¢ Investment in multiplexer readout.

e CMB heritage and connections with

UCB detector development.

e High performance computing/
massively parallel data analysis.

¢ Involvement in Polarbear and SPT

(Stage 1l & IlI).

2% Fermilab

e Detector testing, SiDet for
module assembly, and
radiometer cryostat design,
testing and integration.

e Experience with QUIET
detector module testing and
assembly.

‘ h NATIONAL

. ACCELERATOR

Jl-l'\\p LABORATORY

¢ Investment in developing
large aperture cryogenic
optics.

¢ Investing in robust, large
scale detector fabrication

¢ Investment in SQuliDs.

¢ Involvement in BICEP /
KECK, SPT and ACT Stage Illi,
providing detectors.



FYl4 FYI5 FYI16 FY17 FYI8 FYI9 FY20 FY21 - FY24+

Establish collaboration &
management structure
—l CDO

Detector & Readout R&D at
Universities and DOE Labs

S
DOE LAB Detector Fabrication & Readout

Optimize throughput of existing CMB telescopes
New focal planes and cameras

———————————————————

Design(s) of new telescopes

———————————————————

Build, deploy, commission new telescopes

_—
NERSC Computing

(NERSC 8 deployed) (NERSC 9 deployed)

transition from Stage lll to coherent Stage [V CMB program

N.....

.Full CMB-S4
,Operations

-—



NOTIONAL BUDGET | FYI5 | FYI6 | FYI7 | FYI8 | FYI9 | FY20
project
DOE capital $* 0.5M IM |.5M |.5M |.5M |.5M
ANL/LBNL/SLAC
Detector FTE 5 7 10 14 16 16
project _ ) ) ) _
DOE capital $ Bl
(LBNL/NERSC)
Computing FTE ; | 2 2 3 3
roject
DOE Receiver C':Piial o - 3M 45M | 75M | 75M | 75M
test facilities,
hardware & electronics FTE 4 8 10 12 12 12
NSF University CMB
Deyv, Test, Ops and Analysis 2§ M ™ M el A
new telescopes (NSF) project
site/deploy (NSF/DOE) | capital $ | 2M M M L 2
NSF & DOE new $ : 05M | 2M 3M 4M 5M

telescope operations

2013 dollars TDOE Particle Physicist FTE




Capital

NOTIONAL BUDGET | FYI5 | FYI16 | FYI17 | FYI8 | FY19 | FY20 oL
project
DOE capital $ 0.5M M |.5M |.5M |.5M |.5M 7.5M
ANL/LBNL/SLAC
Detector FTE 5 7 |0 | 4 16 16 68 yr
project _ ) ) ) )
DOE capital $ 0.5M o0.5M
(LBNL/NERSC)
Computing FTE - | 2 2 3 3 11 yr
roject
DOE Receiver C':Piial s| - 3M 45M | 75M | 75M | 75M | 3IM
test facilities,
hardware & electronics FTE 4 8 10 12 12 12 58 yr
NSF University CMB
Dey, Test, Ops and Analysis 2§ M 7™ M SM M
new telescopes (NSF) project )
site/deploy (NSF/DOE) | capital $ 2M M M M A 30M
N IDIOIS I $ : 05M | 2M 3M 4M 5M

telescope operations

TRoughly 2:1 ratio of cost of telescopes
to costs of site prep and deployment

Total Project Capital: $69M and 137 FTE ° yr
(not including 25% contingency)




NOTIONAL BUDGET | FYI5 | FY16 | FYI7 | FYI8 | FY19 | FY20 | OP*/V
DOE gﬂifg 0.5M IM I5M | 15M [ 15M [ 1.5M
ANL/LBNL/SLAC
Detector FTE 5 7 10 14 16 16
project _ ) ) ) _ 0.5M/
DOE capital $ 0>M 3yr
(LBNL/NERSC)
Computing FTE - | 2 2 3 3 4 FTE
. project _
DOE Receiver Gapital $ 3M 45M | 75M | 75M | 7.5M
test facilities,
hardware & electronics FTE 4 8 10 12 12 12
NSF University CMB
Dey, Test, Ops and Analysis 2 $ M M 7™ SM M M
new telescopes (NSF) project )
site/deploy (NSF/DOE) | capital $ 2M M M M M
NSF & DOE new $ . 0.5M 2M 3M 4M 5M 5M
telescope operations
30+FTE
2020+ yearly ops and analysis: $14.2M and 34+ FTE




International competition / partners

e There is no competition at the scale of CMB-54

- European L-class mission (PRISM) was turned down

- No NASA mission expected on this time scale

¢ [nternational partners
- We envision CMB-54 as primarily a U.S. project

- Current international partners contributing to the CMB teams, e.g.,

- Cardiff with all

- KEK, Japan with Polarbear

- McGill U with Polarbear and SPT

- CITA, Oxford, UBC with ACT

- Chile is critical partner; ACT works with CONICYT (Chilean NSF)
- plus many other international participants

- We expect a lot of international interest if CMB-54 goes forward.



What we hope PS5 will endorse

1. CMB uniquely addresses fundamental and exciting HEP science.
2. DOE-HEP has critical role in current and future CMB experiments.

3. Continued NSF and DOE funding of the CMB groups is critical to advancing CMB
science.

- It is essential to include the expertise from established university CMB
groups.

- Best and most economical path to CMB-S4 is to build on existing CMB
experiments & telescopes.

4. CMB-S4 technology is identified and significantly mature to push for large scale
integration;, CMB-54 detector development could and should start ASAP.

5. CMB-54 should exploit infrastructure investments in robust, large scale micro-
fabrication at ANL and SLAC, and in detector development at LBNL. Two
production facilities will be needed.

6. CMB-S4 program could be ready for project CDO in 2015, with full deployment in
2020 and measurements continuing through 2024.

7. The CMB program and CMB-S4 is expected to continue to produce a steady flow
of scientific results and new discoveries en route to achieving its primary goals.
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Approximate raw experimental sensitivity (uK)
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Detection of lensing
B-mode polarization

— Space based experiments

Stage-| — = 100 detectors
Stage-Il - = 1,000 detectors
Stage-Ill — = 10,000 detectors

= = 1 Stage-IV - = 100,000 detectors

2010
Year

2015 2020



Combined Neutrino mass constraints
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CMB Sunyaev-Zel’dovich Cluster Survey

Cluster Mass vs Redshift from

CMB SZ measurements
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CMB measurements detect
clusters through the “shadows”
they make in the CMB, the
Sunyaev-Zel'dovich (SZ) effect:

SPT-3G: Neiust ~ 10,000
CMB'S4: Nc]ust ~ 1 00,000+

CMB lensing measured from
individual clusters, can directly
calibrate cluster mass:

SPT-3G: o(M) ~ 3%
CMB-S4: (M) < ~0.1%



CMB-S4 Lensing Sensitivity 2my,

CMB Lensing power spectrum
residuals from Zm, = 0 model
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setting limit to tensor perturbations
I.e., primordial gravitational waves
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plot taken from Ned Wright's web pages



